1. How to
Figure 3: Start the virtual machine creation process
The first question is a simple one: Do you want to use Custom settings for your new virtual machine or do you want to use settings that typically work well based on the operating system you use? For the purposes of this demonstration, I’m choosing the Custom option.
Figure 4: Do you want to customize your virtual machine?
Now, provide a unique name for your new virtual machine.
Figure 5: Name your new VM
For the purposes of this article, I’m using all local storage; no SAN is involved, although I will include my EMC VNXe 3300 at some point later on. For now, though, this test virtual machine will be deployed to local storage, as shown in Figure 6. Note that the screen in Figure 6 tells you a bit about the selected storage, such as whether or not thin provisioning is supported.
Figure 6: Choose a datastore
VMware has introduced a new version of their virtual machine format – version 8. In addition to enabling a number of new maximums, version 8 also brings with it 3D graphics capability to allow support for Windows Aero and support for high speed USB 3.0 devices. These new hardware capabilities will extend the potential use cases for vSphere, particularly with regard to desktop scenarios. The table below gives you a look at some of the more significant differences between version 7 and version 8 virtual machines. Although version 8 VMs are much more scalable than their version 7 counterparts, version 8 hardware is not supported across all of VMware’s and third party products yet, so choose carefully and only after checking with your vendors.
Some capabilities are dependent on the VMware edition as well. For example, 32-way SMP is available with Enterprise Plus. The table below outlines the high level differences between version 7 and 8 virtual machines without taking into regard edition.
Version 7
|
Version 8
| |
SMP |
8-way
|
32-way
|
RAM |
256 GB
|
1 TB
|
3D support |
No
|
Yes
|
BIOS |
Yes
|
Yes
|
EFI |
No
|
Yes
|
CPU hot add |
Yes
|
Yes
|
RAM hot add |
Yes
|
Yes
|
If choose v11 will report alarm. Please use vSphere Web Client create if you need
Figure 7: Choose the virtual hardware version you want to use
The next step is to identify the operating system that will run inside the virtual machine. Your selection will help the client identify the baseline specifications that will be recommended for this new virtual machine. You can see this screen in Figure 8.
Figure 8: Choose your operating system
On the next screen – shown in Figure 9 – you’ll begin to see where ESXi 5 has introduced some changes. Rather than simply assigning a number of cores to a virtual machine, specify the number of virtual sockets you’d like to assign to the machine as well as the number of cores per socket you’d like to assign. The client will calculate the number of cores based on the values you specify.
Figure 9: Specify CPU options
Next up, assign RAM to the virtual machine. The virtual machine creation wizard provides you with a number of different recommendations including the minimum recommended RAM based on the operating system you selected, default recommended RAM for this OS and the maximum recommended RAM for this particular operating system. You can see these options outlined in Figure 10.
Figure 10: RAM recommendations
Every virtual machine needs one or more network adapters. On the next screen of the wizard, choose the number of NICs you’d like to add to the virtual machine, choose the virtual network to which each NIC should be attached and choose your NIC type.
- E1000. The E1000 is an emulated version of the Intel 82545EM Gigabit Ethernet adapter. Not all guest operating systems include support for this adapter. Generally, if you’re running a system with Linux kernel 2.4.19 or later, Windows XP Professional x64 Edition and later, and Windows Server 2003 (32-bit) and later, you’ll find E1000 support.
- VMXNET 2 (Enhanced). Unlike the E1000, the VMXNET adapters do
not have physical counterparts and are specifically designed for use in a
virtual machine. Once you install VMware Tools, drivers for this
network adapter are provided. VMXNET 2 builds on the base VMXNET by
adding support for features such as jumbo frames and hardware offload.
VMXNET 2 support is provided in the following operating systems:
o Windows Server 2003
o Windows Small Business Server 2003
o Windows XP Pro 32-bit
o Red Hat Enterprise Linux 5.0
o SUSE Linux Enterprise 10
o Red Hat Enterprise Linux 4.0 64-bit
o Ubuntu Linux 64-bit - VMXNET 3. VMXNET 3 is not simply a next version of VMXNET 2.
It’s a new adapter type that includes all of the features of both VMXNET
and VMXNET 2 but adds additional features including IPv6 offloads and
multiqueue support. VMXNET 3 is supported in the following guest
operating systems (refer to VMware documentation for limitations that
may be specific to each operation system):
o Microsoft Windows XP,7, 2003, 2003 R2, 2008, and 2008 R2
o Red Hat Enterprise Linux 5.0 and later
o SUSE Linux Enterprise Server 10 and later
o Asianux 3 and later
o Debian 4
o Ubuntu 7.04 and later
o Sun Solaris 10 U4 and later
Figure 11: Choose a network adapter type
Although the network adapter type is an important selection for your new virtual machine, your choice of SCSI controller will likely have more significant performance implications. This selection is made on the next screen of the virtual machine creation wizard, as shown in Figure 12.
- BusLogic Parallel. This is the default selection for older operating systems.
- LSI Logic Parallel. This is akin to a traditional parallel SCSI adapter and is not suitable for all purposes, but is generally compatible with guest operating systems.
- LSI Logic SAS. This is the default for Windows-based guest operating systems.
- VMware Paravirtual. As is the case with the VMXNET series of Ethernet adapters, the VMware Paravirtual SCSI (PVSCSI) adapter is designed for virtual hardware, but it has some limitations, such as a restricted list of supported guest operating systems.
Figure 12: Choose a SCSI controller type
Next up, choose your virtual disk. You can create a brand new virtual disk, as you can see in Figure 13 is the route I’ve taken, use an existing disk, create a raw device mapping (RDM) or not create a disk at all.
Figure 13: Select a disk
Since I’ve chosen to create a new virtual disk, the wizard’s next step is to provide me – Figure 14 – with the options that I need to carry out that wish.
On this screen, I’m asked three questions:
- Size of the new virtual disk
- Provisioning type
o Thick Provision Lazy Zeroed. Fully allocated space for the new virtual disk and wipes it of previous data.
o Thick Provision Eager Zeroed. Fully allocates, wipes, and zeroes out allocated space on the new virtual disk. Some applications require the use of Eager Zeroed disks. On the surface, it would seem that this type of disk provides the best performance since space is already allocated and prepared, but some testing has shown that the performance benefits may not be substantial.
o Thin Provision. Disk space is not immediately allocated to the disk. It’s allocated on demand with the upper space limit being the specified size of the virtual disk. There are enormous space benefits to be had with thin provisioning, but it also requires you to keep a careful eye on storage to avoid accidentally overprovisioning and running out of space. - Virtual disk location
Figure 14: Choose a location for the new virtual disk
If you like, you can make advanced changes to the disk configuration on the next page of the wizard, shown in Figure 15.
Figure 15: Advanced disk option
2. Useful Link
No comments:
Post a Comment